Allelic variations for lycopene-ε-cyclase and β-carotene hydroxylase genes in maize inbreds and their utilization in β-carotene enrichment programme

نویسندگان

  • Vignesh Muthusamy
  • Firoz Hossain
  • Nepolean Thirunavukkarasu
  • Supradip Saha
چکیده

Vitamin A deficiency is a global health problem and can be effectively alleviated through crop biofortification. Quantification of carotenoids using highperformance liquid chromatography is expensive and time-consuming, thereby posing a challenge in the selection of genotypes with high provitamin A. Favourable alleles possessing rare genetic variation in lycopene-ε-cyclase (lcyE) and β-carotene hydroxylase (crtRB1) genes are associated with higher accumulation of provitamin A, especially β-carotene; and selection of these alleles holds immense promise in reducing large-scale phenotypic assays. Screening of a diverse set of 385 maize inbred lines of indigenous and exotic origin detected the presence of two alleles (amplicon size: 250 and 650 bp) of lcyE and three alleles (amplicon size: 296, 543 and 875 bp) of crtRB1 in the inbred panel. Favourable alleles of both the genes were rare among the traditional maize germplasm; 3.38% of the inbreds possessed the favourable allele (650 bp) of lcyE, while 3.90% inbreds had the favourable allele (543 bp) of crtRB1. Five inbreds (1.3%) with favourable alleles of both the genes were found. Inbreds with favourable alleles of crtRB1 and lcyE serve as rich genetic resources for effective utilization in the maize biofortification programme. *Corresponding author: Hari Shanker Gupta, Division of Genetics, ICAR-Indian Agricultural Research Institute (IARI), New Delhi 110012, India; Borlaug Institute for South Asia (BISA), New Delhi 110012, India E-mail: [email protected]

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Development of Biofortified Maize Hybrids through Marker-Assisted Stacking of β-Carotene Hydroxylase, Lycopene-ε-Cyclase and Opaque2 Genes

Traditional yellow maize though contains high kernel carotenoids, the concentration of provitamin A (proA) is quite low (<2 μg/g), compared to recommended level (15 μg/g). It also possesses poor endosperm protein quality due to low concentration of lysine and tryptophan. Natural variant of crtRB1 (β-carotene hydroxylase) and lcyE (lycopene-ε-cyclase) cause significant enhancement of proA concen...

متن کامل

Cloning and Functional Characterization of a Lycopene β-Cyclase from Macrophytic Red Alga Bangia fuscopurpurea

Lycopene cyclases cyclize the open ends of acyclic lycopene (ψ,ψ-carotene) into β- or ε-ionone rings in the crucial bifurcation step of carotenoid biosynthesis. Among all carotenoid constituents, β-carotene (β,β-carotene) is found in all photosynthetic organisms, except for purple bacteria and heliobacteria, suggesting a ubiquitous distribution of lycopene β-cyclase activity in these organisms....

متن کامل

بررسی بیان ژن های کلیدی مسیر بیوسنتز بتا کاروتن در Dunaliella salina تحت شرایط متفاوت نور و شوری

Dunaliella salina, a unicellular green microalga with ability of large quantity β-carotene accumulation, was used as a proper model for analysis of expression of the pds and lyc genes, involved in β-carotene biosynthesis pathway, under different light intensities and salinity concentrations. For this purpose, an experiment with two factors, light intensities (200 and 1000 µmol m-2s-1) and salin...

متن کامل

Molecular characterization of carotenoid biosynthetic genes and carotenoid accumulation in Lycium chinense.

Lycium chinense is a shrub that has health benefits and is used as a source of medicines in Asia. In this study, a full-length cDNA clone encoding β-ring carotene hydroxylase (LcCHXB) and partial-length cDNA clones encoding phytoene synthase (LcPSY), phytoene desaturase (LcPDS), ξ-carotene desaturase (LcZDS), lycopene β-cyclase (LcLCYB), lycopene ε-cyclase (LcLCYE), ε-ring carotene hydroxylase ...

متن کامل

Correction: Development of β-Carotene Rich Maize Hybrids through Marker-Assisted Introgression of β-carotene hydroxylase Allele

Development of vitamin A-rich cereals can help in alleviating the widespread problem of vitamin A deficiency. We report here significant enhancement of kernel β-carotene in elite maize genotypes through accelerated marker-assisted backcross breeding. A favourable allele (543 bp) of the β-carotene hydroxylase (crtRB1) gene was introgressed in the seven elite inbred parents, which were low (1.4 µ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015